SESAME
SEnsing for Sport And Managed Exercise

Stephen Hailes (UCL)
Andy Hopper &
George Coulouris (CUCL)
Alan Wilson (RVC)
David Kerwin (UWIC)
Joan Lasenby (CUED)
Dipak Kalra (CHIME)
+ others
Project aims

• Primary aim is to develop practical techniques for monitoring the actions of sports men and women in order to provide them with information to enhance their training and performance.

• Initial application domain: sprinting

• The aims of the project are:
 – To model (part of) an athlete's body and its actions in biomechanical and physiological terms;
 – To support both athletes’ and coaches’ training and education
 – To compare and evaluate different athletes' actions and performance, identifying advantages and disadvantages.
 – To explore the feasibility of providing real-time feedback through non-invasive wireless signalling in order to correct actions and build ‘muscle memory’ (the proprioceptive sense).
 – To place the UK firmly at the forefront of sporting technology.
Vision

• Athletes are instrumented, using wireless sensor systems
 – Much current work done in the lab – using optical motion capture
 – That unobtrusively capture data about position, skeletal posture, muscular response and (later) physiology
 – Engineered not to cause injury, performance degradation, etc.
• Augmented with information from trackside monitors and auto-tracking video capture
• Information about performance is provided in a precise and appropriate way to coaches and to athletes
 – Using video and enhanced reality techniques
 – Using direct biofeedback
 – Combined with long term data storage and offline trend analysis
• Based on biomechanical models that are developed (partly) from captured sensor data
• Focus is on scientific rigour and practical deployment.
Consortium

- Existing links:
 - UWIC
 - RVC
 - CUCL
 - CUED

 - Locomotor biomechanics
 - Innovative sensor technology
 - Pattern recognition and signal processing

 - Location aware and sentient computing
 - Distributed sensor systems

 - Sports biomechanics
 - Performance measurement
 - Coaching

 - UCL CS

 - Embedded Systems
 - Wireless networking
 - MAC, QoS
 - Augmented reality

 - UCL CHIME
 - EHR
 - Decision support systems

SESAME presentation UKUbinet, July 12, 2006.
Existing work - RVC

An accelerometer and telemetry unit in place on the distal limb of a horse
Data – Signal Processing

Hard surface

1.9 a b Hoof
1.8
1.7
1.6
1.5
1.4

MCP

A

Soft surface

1.9 a b Hoof
1.8
1.7
1.6
1.5
1.4

MCP

E

Prox. phalanx

B

Prox. phalanx

C

Prox. phalanx

D

Prox. phalanx

F

Prox. phalanx

G

SESAME presentation UKUbinet, July 12, 2006.
Workpackage structure

• WP1: System architecture
 – Infrastructure for data filtering, fusion, etc. to produce application relevant events like start, stride, first 25 metres, etc.
 – Network services, QoS: timeliness, joint source/channel coding, MAC protocols, etc.
 – System autoconfiguration
 • Sensor abstraction framework – sensor event descriptors
 • Device discovery, specification of application level objectives, control protocols

• WP2: Signal processing & biomechanical modelling
 – Convert raw data into information
 – Don’t yet understand exactly what sensor data discriminates for effects of interest, so initially capture everything going
 – Develop biomechanical models – partly on basis of captured sensor data, but also acting as mechanisms for feedback to coaches, and to inform compression.
• WP3: Sensor system development
 – Create sensors to be attached to athletes
 • Localisation, body position and orientation, segment orientation, ground interactions, energy measurements, stance times, limb forces, ...
 – Sensitivity analysis on sensor placement and attachment using robotic arm
 – Gold standards based on optical measurement, robot arm
 – Semi auto sensor calibration methods

• WP4: Human factors and trials
 – Recruit and assess athletes
 – Evaluate and characterise elite sprinting
 – Provide input to biomechanical modelling from coaches
 – Assess effects of technology on performance
• WP5: Feedback and visualisation
 – Present information in a form that is meaningful to a human
 • Initially though overlay on video
 • 3D models from video input
 • Augmented reality and biofeedback

• WP6: Long term storage and analysis
 – Secure multimedia EHR database
 • Combining bulky video and sensor data with standards-based clinical records
 • High performance repository of multimedia data, augmented with suitable metadata
 • Query interface meaningful to coaches and athletes
 • Trend analysis
Deliverables

- Early deliverables:
 - Prototype wireless sensing systems
 - Automated video capture based on localisation
 - Robotic arm
 - Long term data storage
- Mid-term deliverables
 - Autoconfiguring wireless sensing systems
 - Signal processing and feature extraction
 - Biomechanical models
 - Visualisation
- Longer term deliverables
 - Performance evaluation
 - Coaching effectiveness
 - 3D visualisation
 - Biofeedback
 - Integrated EHR systems
Other partners

- Localisation
 - Ubisense
 - Forsberg Services

- Motion capture
 - PhaseSpace
 - Coda Motion
 - Vicon Peak

- Hardware
 - Sun
 - IMEC
 - XSens

- Sports science
 - Glaxo Smithkline (Lucozade Sports Science Academy)
 - Darren Campbell’s sprint academy
 - Technical advisory panel of elite coaches and athletes, including Darren Campbell, Welsh National coach, …
Conclusion

• Unique interdisciplinary research
• Ambitious, high-impact, very timely
• Internationally leading consortium
• Solid industrial engagement
• Wider applications
• Complementary to BiosensorNet