TIME-EACM

Alastair R. Beresford

University of Cambridge

11th July 2006
The transport problem

Current transport infrastructure in the UK is failing to support its users:

- Road congestion in the UK costs of the order of 20bn per annum
- 85% of senior business people believe that investment decisions are influenced by the quality of transport
- Nearly 15% of trains in the UK arrived late in 2005-06
- Many Cambridge streets continue to exceed air quality measures for various pollutants
Can technology help?

Hypothesis:

investment in monitoring, distribution and processing of traffic information will cause a substantial and significant increase in transport efficiency

If true, then we can:

- improve business efficiency
- increase social cohesion and inclusion through better public transport
- reduce pollution
Goal:

to investigate, design and build a secure yet open interface to support the controlled sharing of transport-related data

In more detail:

- Develop, build and deploy sensors
- Construct an event-based middleware that:
 - hides low-level sensor aggregation from applications
 - integrates high-level context models with query support
 - provides open and collaborative access to data
 - ensures privacy of personally identifiable information
 - controls distribution of commercially-sensitive data
- Write real-world applications that fully exploit the architecture
- Evaluate all of the above
- Focus on solutions for the City of Cambridge
Application scenarios

▶ Car park status via SMS
▶ Interactive bus arrival signs at bus stops
▶ Taxi booking and dispatch via the web
▶ Estimated journey times for car drivers
▶ Inter-modal journey planner
▶ Congestion detection, prediction and avoidance
▶ Behaviour inference to support long-term policy planning
▶ ...
Why an open architecture?

We have several of these applications already, so why an open architecture?

- Applications are easier to build with such support
 - encourages quicker innovation and deployment
 - reduces total cost for a given set of applications
- Enables market place in capturing, processing and distribution of transport data
- Integration and inference from several sources becomes possible
 - enables better applications through richer context data
What have we achieved so far?

Started work in many of the key areas of the grant; so far:

- Road sensors: scoot, Irisys, sentient van
- Environment: city pollution data, weather station
- Inference: road topology, mean vehicle speed, energy-aware, in-network processing
- Long-term strategy: privacy-aware congestion charging
- Middleware: distributed, standards-based design & build underway
Sensor example: infrared movement tracking

- Utilises an infrared 16x16 pixel CCD to track movement over the field-of-view
- Normally used in indoor environments as a people counter
- We have deployed this sensor outdoors to increase our coverage area
 - Initial deployment reveals success rate of 80-90%
- Sensor preserves privacy: individuals cannot be identified

(Collaborative work with Irisys Ltd.)
Sensor example: infrared movement tracking

(video)

(sensor)

(Collaborative work with Irisys Ltd.)
Inference example: using GPS traces to update maps

- Collect GPS traces from private vehicles
- Use traces to infer information about the environment
- Traditional techniques: photos, council DBs, probe vehicles

(Joint work with Jonathan Davies and Andy Hopper)
Inference example: using GPS traces to update maps

- Enables up-to-date maps & other data besides
- How do we collect vast quantities of data?
- Where does the processing occur?

(Joint work with Jonathan Davies and Andy Hopper)
Inference example: using GPS traces to update maps
Sensor data management

Sensor node constraints:
- Limited bandwidth, energy and processing power

Objective:
- Reduce the volume of data propagated from the sensors to the middleware

Approach:
- Push data processing into the network.
- Use lossy compression techniques that exploit:
 - temporal correlations; and
 - spatial correlations of time series data

(Work done at Birkbeck by N. Trigoni, A. Guitton and A. Skordylis)
SCOOT traffic data

- 160 inductive loops deployed in Cambridge
- flow and occupancy readings
- information generated every 5 minutes
- data recorded 6 months

(Work done at Birkbeck by N. Trigoni, A. Guitton and A. Skordylis)
Proposed framework

Compression and clustering:
- Apply Fourier or wavelet transforms to compress the data generated at each sensor
- Cluster sensors together based on the degree of similarity between their compressed data

Data transmission to the middleware:
- Transmit the compressed data of only one node per cluster (the cluster-head)
- For the remaining nodes of the cluster, transmit regression parameters that correlate their data to that of the cluster-head

(Work done at Birkbeck by N. Trigoni, A. Guitton and A. Skordylis)
Middleware—design features & goals

- Supports data fusion
- Distributes current and historical data
- Hotplug support for new components and applications
- Privacy & security protection
- Support for maintenance
- Robust to failure
- Explicitly measures uncertainty of data
- Amenable to performance measurement
- Mathematically predictable performance
Middleware—current implementation

- Two types of components: stream and storage
- No central component (well, almost)
- Events distributed to listeners by stream component in XML
- Historical queries to storage component via XML/RPC
- XML schemas used to enforce correct data formats
- TCP/IP used to connect together different components
Middleware—resource discovery service

- An example of a storage component
- Resource discovery runs on a well known IP/port
- One standardised XML “meta” schema for all storage components
- Accessed via XML/RPC
- Actions: list, get, create, update, delete
- Public key crypto used to support distributed access control
- Stores location (IP/port) of each component; apps can query RDS
- Assists with component migration
More information

http://www.cl.cam.ac.uk/Research/TIME