Modelling Interactions in Ubiquitous Environments

Mohamed Ahmed and Stephen Hailes

5th of May 2004
Environmental characteristics:

- Underlying systems are highly dynamic and mobile
- There is massive heterogeneity in the components and services available
- Components have a limited view of the global environment
- Principals have conflicting beliefs, desires and intentions
- There are no geographical boundaries and organisational boundaries are fuzzy

Determine the trustworthiness of individuals in such environments:

- What information can be used to determine this? And how can it be used?
- Where should this information be gathered from?
- What penalties can be in place to support acting on trusting intentions?
Traditional security

• Traditional trust management:
 – Centrally policed trust, through organisationally centralised authorities that determine the trustworthiness of individuals

• Assumes:
 – Widespread trust in these authorities
 – Availability
 – Enforceable penal system
 – Individuals cannot change their identities to avoid them

• Limitations:
 – Not fully supportable
Decentralised Trust Management

Situate decision making in the *local* context of interaction:

Based on information a *resource* can gather, the *risks* it faces, the potential *threat* posed by a *trustee* and the *local policies* of interaction

- **Identities**
 - Pseudonyms are cheap and may be ephemeral
- **Information Collection:**
 - Principals have different characteristics/policies
 - Heterogeneous incentives

Cooperating through trusting intentions is risky:

- Policies, Violations, Enforcement are local
Our Approach: Social Networks

If the consequences of interactions remain private; between a principal and a trustee

- Opportunism is a dominant strategy for malicious agents when interactions are infrequent or unpredictable.

• Solution
 - Transform the consequence of an interaction from private to public (without centralisation)
 - Leverage the embedded social network of principals
 - High value information
 - Credible threat of punishment

• Requirement
 - Create endogenous mechanisms that foster cooperation (between principals-witness and principals-trustees)
1. Assessing the intentions of trustees

2. Assessing the intentions of witnesses

3. Self organisation

How?
Assessing the intentions of trustees

• A signaling Game:

Given two agents; a Trustee \((T)\) and a Principal \((P)\). \(T\) has some private information \((t)\). On the basis of this information, \(T\) sends a message \((req)\) to \(P\). Based on the message \((req)\), \(P\) takes some action \((ac)\).
Our Translation

- **Utility of the principal:** \(U_p(t_x, req_x, ac_i) \)

- **Utility of the trustee:** \(U_x(t_x, req_x, ac_i) \)

- A principal's belief in the type of trustee:

\[
\mu(t_x \mid req_x) \equiv tr(a_p, a_x, \gamma_i, time)
\]
What is t?

- For each request (req_x), the Receivers action $a^*(req_x)$ must maximise its expected utility, given the belief about which type of agent could have sent the request. Therefore $a^*(req_x)$ solves:

$$\max_{ac_i \in AC} \left(\sum_{t_x \in T} g \left(\mu (t_x \mid req_x), U_p (t_x, req_x, ac_i) \right) \right)$$
Which req?

For each type of agent (t_x), the Senders request $req^*(t_x)$ must maximise its expected utility, given the receivers (optimal) strategy ($a^*(req_x)$). Therefore $req^*(t_x)$ solves:

$$\max_{\forall req} \left(\left\{ U_x \left(t_x, req_x, a^*(req_x) \right) \right\}_{t_x \in T} \right)$$
Concluding remarks

We can create and use signalling mechanism to analyse the potential *type* of prospective trustees based on their *credentials*, the *requests* they make and their *history*.

Thank you for your attention,

All questions welcome
Our Translation

- A principal and a trustee: \(a_p \) and \(a_x \)
- Types of Agents: \(T = \{\text{Malicious, Good}\} \)
- Set of Resources a principal manages: \(\Gamma_p = \{\gamma_1, \gamma_2...\gamma_n\} \)
- Security categorisations of the resources: \(\text{sec}(OBJ, IMP) \)
- Set of Actions available on a resource: \(ACT_{\gamma_i}(act_1, act_2...act_n) \)
- A request for action upon a resource: \(\text{req}(a_x, act_i, \gamma_i) \)
- A set of actions available to a principal: \(\text{AC} = \{\text{grant, deny}\} \)
- Trust in a trustee: \(tr(a_p, a_x, \gamma_i, \text{time}) \)
Why do this?

• Large environments – potentially process a vast quantity of information

• Information from different sources
 – Partially redundant
 – Incomplete
 – Out of date
 – Contradictory

• Heterogeneous sources:
 – Different incentives
 – Credibility
 – Policies
What we need

- Methods of analysis that provide:
 - Reliable information evaluation
 - Support pre-emptive actions

- Distinguish between the types of information senders and the quality of the information sent.