SCIENCE FOR GLOBAL UBIQUITOUS COMPUTING

Robin Milner, UbiNet 2003

•

•

•
SCIENCE FOR GLOBAL UBIQUITOUS COMPUTING

Robin Milner, UbiNet 2003

- By 2020, a single *Global Ubiquitous Computer (GUC)*
SCIENCE FOR GLOBAL UBIQUITOUS COMPUTING

Robin Milner, UbiNet 2003

- By 2020, a single **Global Ubiquitous Computer (GUC)**

- Part designed, part natural phenomenon
By 2020, a single Global Ubiquitous Computer (GUC)

Part designed, part natural phenomenon

Shall we understand it?
UNDERSTANDING and BUILDING

- Underlying both are **modelling kits**

-

-

-

-
UNDERSTANDING and BUILDING

- Underlying both are **modelling kits**

- **Traditional science and engineering** has
 - *Differential equations, Laplace transforms, Matrix algebra,* …
 - … and they join understanding with building
UNDERSTANDING and BUILDING

- Underlying both are **modelling kits**

- **Traditional science and engineering** has
 Differential equations, Laplace transforms, Matrix algebra, ...
 ...and they join understanding with building

- **Computer science and engineering** has
 Automata, Languages, Relational algebra, Network theories, Logics, Stochastics, Type theory, Process calculi, Semi-structured data, ...
 ...but the junction is tenuous. **Why?**
UNDERSTANDING and BUILDING

• Underlying both are **modelling kits**

• **Traditional science and engineering** has
 Differential equations, Laplace transforms, Matrix algebra, ...
 ...and they join understanding with building

• **Computer science and engineering** has
 Automata, Languages, Relational algebra, Network theories, Logics, Stochastics, Type theory, Process calculi, Semi-structured data, ...
 ...but the junction is tenuous. **Why?**

• For **Ubiquity??** Separation will lead to *stagnation or worse.*
A GRAND CHALLENGE FOR COMPUTING

- To develop an informatic science whose concepts, calculi, theories and automated tools allow descriptive and predictive analysis of the GUC at each level of abstraction
A GRAND CHALLENGE FOR COMPUTING

- To develop an informatic science whose concepts, calculi, theories and automated tools allow descriptive and predictive analysis of the GUC at each level of abstraction.

- That every system and software construction—including languages—for the GUC shall employ only these concepts and calculi, and be analysed and justified by these theories and tools.

www.nesc.ac.uk/esi/events/Grand_Challenges/proposals/Ubiq.pdf
A GRAND CHALLENGE FOR COMPUTING

- To develop an informatic science whose concepts, calculi, theories and automated tools allow descriptive and predictive analysis of the GUC at each level of abstraction.

- That every system and software construction—including languages—for the GUC shall employ only these concepts and calculi, and be analysed and justified by these theories and tools.

www.nesc.ac.uk/esi/events/Grand_Challenges/proposals/Ubiq.pdf

An ideal goal? But no argument limits the degree of possible success!
PLATFORM FOR GUC RESEARCH

Basic notions Automata; Relational databases; Program logics; Verification; Mathematical semantics; Type theories; …
PLATFORM FOR GUC RESEARCH

Basic notions Automata; Relational databases; Program logics; Verification; Mathematical semantics; Type theories; ...

Concurrent systems Petri nets; Process calculi; Logics of action; ...
PLATFORM FOR GUC RESEARCH

Basic notions Automata; Relational databases; Program logics; Verification; Mathematical semantics; Type theories; ...

Concurrent systems Petri nets; Process calculi; Logics of action; ...

Ubiquity Mobility (ambients, pi calculus); Security and privacy; Boundaries, resources and trust; Distributed data; Game-theoretic models; Hybrid systems; Stochastics; Model-checking; ...

www.cl.cam.ac.uk/users/rm135/plat.pdf
PLATFORM FOR GUC RESEARCH

Basic notions Automata; Relational databases; Program logics; Verification; Mathematical semantics; Type theories; …

Concurrent systems Petri nets; Process calculi; Logics of action; …

Ubiquity Mobility (ambients, pi calculus); Security and privacy; Boundaries, resources and trust; Distributed data; Game-theoretic models; Hybrid systems; Stochastics; Model-checking; …

www.cl.cam.ac.uk/users/rm135/plat.pdf

…and what more?
GUC RESEARCH: THREE KINDS OF PROJECT

Experimental Applications: *Collaborate* with designers of specific systems.
GUC RESEARCH: THREE KINDS OF PROJECT

Experimental Applications: Collaborate with designers of specific systems. Examples:

- A sentient building
- Healthcare coordinated across a city
- Platform for business processes
GUC RESEARCH: THREE KINDS OF PROJECT

Experimental Applications: Collaborate with designers of specific systems. Examples:

- A sentient building
- Healthcare coordinated across a city
- Platform for business processes

GUC RESEARCH: THREE KINDS OF PROJECT

Experimental Applications: Collaborate with designers of specific systems. Examples:

- A sentient building
- Healthcare coordinated across a city
- Platform for business processes

Experimental Generic Systems: Collaborate with sister engineering Grand Challenge, Scalable Ubiquitous Computing Systems. Examples:

- Resource allocation in open distributed environment
- Database design respecting provenance
- Logic and language for reflectivity
GUC RESEARCH: THREE KINDS OF PROJECT

Experimental Applications: Collaborate with designers of specific systems. Examples:

- A sentient building
- Healthcare coordinated across a city
- Platform for business processes

Experimental Generic Systems: Collaborate with sister engineering Grand Challenge, Scalable Ubiquitous Computing Systems. Examples:

- Resource allocation in open distributed environment
- Database design respecting provenance
- Logic and language for reflectivity

A Theoretical Hierarchy: ...
A THEORETICAL HIERARCHY

Why do we need models at many abstraction levels?

-
-
-
A THEORETICAL HIERARCHY

Why do we need models at many abstraction levels?

Theoretical goals for the Grand Challenge:

-

-

-
A THEORETICAL HIERARCHY

Why do we need models at many abstraction levels?

Theoretical goals for the Grand Challenge:

- *To express theories for the GUC as a hierarchy of models and languages, assigning each concept (e.g. trust) to a certain level in the hierarchy*
A THEORETICAL HIERARCHY

Why do we need models at many abstraction levels?

Theoretical goals for the Grand Challenge:

- To express theories for the GUC as a hierarchy of **models and languages**, assigning each concept (e.g. trust) to a certain level in the hierarchy.

- To define, for each model M, how a system description in M may be realised or implemented in models/languages M_1, \ldots, M_n lying below M.