Adaptable Mobile Applications through SATIN:
Exploiting Logical Mobility in Mobile Computing Middleware

Stefanos Zachariadis, Cecilia Mascolo.
Department of Computer Science
University College London

http://www.cs.ucl.ac.uk/staff/s.zachariadis

Thursday 25 September 2003
Physical Mobility

- Ubiquity of mobile computing devices
 - Laptops, PDAs, cellular phones
- Variable connectivity
 - Bluetooth, 802.11x, GSM/GPRS/CDMA/.../3G, infrared, docking
 - Nomadic, ad-hoc ...
 - Variable in cost and type
- Numbers increasing
 - 2002: 15.5 million PDAs, 2005: 700 million Bluetooth chips (Gartner)
Characteristics

- Limitations (compared to traditional computing)
 - Memory, battery power, CPU power, erratic (expensive) connectivity
 - Improving but lagging behind still

- Different usage paradigms
 - Input/output
 - Speed, ease of use, frequent but brief usage
 - E.g. Check schedule
 - Reports show that users rarely install applications on mobile devices
 - Applications need to cater to users’ needs throughout the device’s lifetime
Characteristics (2)

• Heterogeneity!
 – Device/Hardware (Physical)
 – Software/Middleware (Logical)
 – Network

• Very dynamic environment
Logical Mobility

- Ability to send parts of an application (or migrate/clone a process) to another host
- Popularised by Java
- Classification into paradigms
 - Client/Server (CS)
 - Remote Evaluation (REV)
 - Code on Demand (COD)
 - Mobile Agents (MA)
- Various middleware (mobile & stationary) systems use it
Advantages of Logical Mobility

• Flexibility
 – Dynamic applications
 • For a Dynamic Environment?
 • For a Heterogeneous Environment?

• Automatic software update
 – Maintenance

• New abilities

• Use of remote resources

Thursday 25 September 2003
Motivation

- Investigate the use of Logical Mobility by mobile applications
 - Middleware
- Prove that logical mobility can bring tangible benefits to mobile application developers and users
 - Benefits include faster operation, less user-interaction, services offered based on context and location, reduced cost, better user experience
Deficiencies of Related Work

- Limited use of LM
 - Usage of LM to provide reconfigurability to middleware
 - ReMMoC (Lancs), UIC (Ubicore.com)
 - Allows interaction with services provided by heterogeneous platforms/middleware systems
 - Usage of particular LM paradigms to provide particular services to applications
 - LIME (Wustl) uses MA, PeerWare (Politecnico di Milano) uses REV, Jini (Sun) uses COD
 - Others are not really geared for mobile networks
 - In Fargo-DA disconnections are announced
Current Mobile Application Engineering (PalmOS)

- Event driven, single threaded applications
- Files (Applications & Data) stored in main memory (usually 8MB).
 - Files stored as databases (collection of records)
- Developers compile application into a single file (Palm Resource, PRC)
- Application data can be stored in multiple Palm database files (PDBs).
Current Mobile Application Engineering (2)

• Very limited use of libraries
• Applications have a unique identifier, Creator ID (4 bytes)
 – Registered on a central database
 – Identifies PRCs & PDBs to the OS
What’s Wrong with this Model?

- Very limited code sharing
 - On the device itself, between different devices
- Monolithic applications
- Difficult to update application
- No versioning scheme for libraries
- No standard way to know which PRCs a device in reach has.
- Difficulty to install applications
 - Statistics suggest that majority of users never install any 3rd party application
Proposed Solution: SATIN

- Component based middleware
- Allows for static & dynamic configuration
- Small footprint
- Encourages decoupling of applications into modules
- Relies on developers following guidelines
Principles: Architecture

- Modular
- Stresses componentisation
 - Including the middleware itself
- Component identification
 - Dependency scheme
 - Versioning scheme
 - Easy to transmit
- Dynamic addition and removal of modules
Capabilities

• A SATIN component is a capability
 • Ranges from applications to libraries
 • SATIN applications are collections of capabilities with an “executable” one.
 • A capability provides some functionality to either the user or other capabilities.
 • Uniquely identified
 • Provide a versioning scheme
 • Revisions of a capability
 • Provide a Dependency Scheme
 • Middleware is a Collection of Capabilities
 • Advertising and Discovery
Logical Mobility in SATIN

- Ability to encapsulate all LM paradigms to a Logical Mobility Unit (LMU)
 - Hosting environment
 - Requesting / sending
 - Deployment
 - Containers, acceptance/rejection
- Language abstractions
 - Objects, Classes, RPCs...
 - Code which does not map directly to the underlying platform is data
- Group various LM entities together
- Signature
- Identification

Thursday 25 September 2003
Some Numbers

- Prototype
 - J2SE
 - Personal Java & J2ME considered
- 40K dist/satin-20030714.jar
- 24K lib/kxml2.jar
- 40K lib/μcode.jar
Future Work

• Looking for the killer app
 • Self-organisation
 • Adaptable mobile computing is an instance

• Evaluation of approach
 • New applications possible
 • Comparison to applications that don’t use LM
 • Definition of “best”?
 • Scalability
Conclusion

- Physical Mobility
 - Increased popularity
 - Increased abilities

- Logical Mobility
 - Principles
 - Harness potential of mobile devices

- SATIN
 - Superset of previous approaches
 - Flexible use of LM to applications
Thank You!

http://www.cs.ucl.ac.uk/staff/s.zachariadis

{s.zachariadis,c.mascolo}@cs.ucl.ac.uk